|
static const int | digits = std::numeric_limits<Mezzanine::Real>::digits |
| How many integer digits(in machine base) of precision can this handle in each X, Y or Z without floating point component or error?
|
|
static const int | digits10 = std::numeric_limits<Mezzanine::Real>::digits10 |
| How many integer digits in base 10 of precision can this handle in each X, Y or Z without floating point component or error?
|
|
static const std::float_denorm_style | has_denorm = std::numeric_limits<Mezzanine::Real>::has_denorm |
| Does this support exceptionally small numbers near 0?
|
|
static const bool | has_denorm_loss = std::numeric_limits<Mezzanine::Real>::has_denorm_loss |
| When extra precision near 0 is lost, can this type distinguish that from other imprecision.
|
|
static const bool | has_infinity = std::numeric_limits<Mezzanine::Real>::has_infinity |
| Can This represent an infinitely large value in X, Y or Z?
|
|
static const bool | has_quiet_NaN = std::numeric_limits<Mezzanine::Real>::has_quiet_NaN |
| ??? Required by std::numeric to be compliant More...
|
|
static const bool | has_signaling_NaN = std::numeric_limits<Mezzanine::Real>::has_signaling_NaN |
| ??? Required by std::numeric to be compliant More...
|
|
static const bool | is_exact = std::numeric_limits<Mezzanine::Real>::is_exact |
| The Vector2 uses Real, which is typically a machine dependedant which can be inexact.
|
|
static const bool | is_iec559 = std::numeric_limits<Mezzanine::Real>::is_iec559 |
| Do X, Y and Z adhere to iec 559?
|
|
static const bool | is_integer = false |
| Can this only store integer types.
|
|
static const bool | is_modulo = std::numeric_limits<Mezzanine::Real>::is_modulo |
| Is overflow of this type handle by modulo overflow?
|
|
static const bool | is_signed = true |
| Does this support negative values?
|
|
static const bool | is_specialized = true |
| Does this class (numeric_limits<Mezzanine::Vector2>) exist.
|
|
static const int | max_exponent = std::numeric_limits<Mezzanine::Real>::max_exponent |
| The largest power of the radix that is valid floating point value.
|
|
static const int | max_exponent10 = std::numeric_limits<Mezzanine::Real>::max_exponent10 |
| The largest power of 10 that is valid floating point value.
|
|
static const int | min_exponent = std::numeric_limits<Mezzanine::Real>::min_exponent |
| The smallest power of the radix that is valid floating point value.
|
|
static const int | min_exponent10 = std::numeric_limits<Mezzanine::Real>::min_exponent10 |
| The smallest power of 10 that is valid floating point value.
|
|
static const int | radix = std::numeric_limits<Mezzanine::Real>::radix |
| The base of the number system that this is implemented in.
|
|
static const std::float_round_style | round_style = std::numeric_limits<Mezzanine::Real>::round_style |
| How items that fit between the precise amount a Real can represent will be adapted.
|
|
static const bool | tinyness_before = std::numeric_limits<Mezzanine::Real>::tinyness_before |
| Are tiny values respected during rounding?
|
|
static const bool | traps = std::numeric_limits<Mezzanine::Real>::traps |
| Can this generate a trap?
|
|
template<>
class std::numeric_limits< Mezzanine::Vector2 >
Get Numeric details on Vector2.
Definition at line 336 of file vector2.h.